Restriction of Toral Eigenfunctions to Hypersurfaces and Nodal Sets

نویسندگان

  • Jean Bourgain
  • Zeév Rudnick
چکیده

We give uniform upper and lower bounds for the L norm of the restriction of eigenfunctions of the Laplacian on the three-dimensional standard flat torus to surfaces with non-vanishing curvature. We also present several related results concerning the nodal sets of eigenfunctions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the nodal sets of toral eigenfunctions

We study the nodal sets of eigenfunctions of the Laplacian on the standard d-dimensional flat torus. The question we address is: Can a fixed hypersurface lie on the nodal sets of eigenfunctions with arbitrarily large eigenvalue? In dimension two, we show that this happens only for segments of closed geodesics. In higher dimensions, certain cylindrical sets do lie on nodal sets corresponding to ...

متن کامل

Restriction of Toral Eigenfunctions to Hypersurfaces

Let T = R/Z be the d-dimensional flat torus. We establish for d = 2, 3 uniform upper and lower bounds on the restrictions of the eigenfunctions of the Laplacian to smooth hyper-surfaces with non-vanishing curvature.

متن کامل

On the determination of asymptotic formula of the nodal points for the Sturm-Liouville equation with one turning point

In this paper, the asymptotic representation of the corresponding eigenfunctions of the eigenvalues has been investigated. Furthermore, we obtain the zeros of eigenfunctions.

متن کامل

Geodesics and Nodal Sets of Laplace Eigenfunctions on Hyperbolic Manifolds

Let X be a manifold equipped with a complete Riemannian metric of constant negative curvature and finite volume. We demonstrate the finiteness of the collection of totally geodesic immersed hypersurfaces in X that lie in the zero-level set of an arbitrary Laplace eigenfunction. For surfaces, we show that the number can be bounded just in terms of the area of the surface. We also provide constru...

متن کامل

The numerical values of the nodal points for the Sturm-Liouville equation with one turning point

An inverse nodal problem has first been studied for the Sturm-Liouville equation with one turning point. The asymptotic representation of the corresponding eigenfunctions of the eigenvalues has been investigated and an asymptotic of the nodal points is obtained. For this problem, we give a reconstruction formula for the potential function. Furthermore, numerical examples have been established a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012